WiBAR: Wideband Autocorrelation Radiometry for Measuring Snow and Ice Accumulation

Presenter/PI: Roger De Roo

Team Members: Anthony W. England, Lin van Nieuwstadt, Maryam Salim, Puneeth Yogananda, Steven Rogacki: University of Michigan

Program: IIP(ICD)-16

How much water is stored in the seasonal snow pack?

- Billions of people around the world depend on snowmelt for their water
- We don't yet have a reliable way to measure the storage of water in the snow pack globally
- The remote sensing community has not yet settled on the optimal combination of approaches for this problem (eg. NASA SnowEx)
- WiBAR is another tool:
 - -microwave, so all-weather
 - -passive, so low power, thus low cost
 - -deterministic, so no algorithm calibration

Why a new way to measure snow?

Today's operational method: differential scatter darkening

WiBAR measures Planck coherency

WiBAR can measure ice thickness ...

... accurately

- X-band FD-WiBAR
- Ice thickness
 measurements
- Bare ice and with thin snow cover
- Theoretical derived from ground truth (ice thickness & incidence angle)

Evidence of coherent emission from snow

A faster architecture: TD-WiBAR

 Our initial studies relied on a "rapid implementation", or "frequency domain" WiBAR:

- but instantaneous bandwidth is small, so measurements take a long time (minutes)
- An alternative, "time domain" architecture that looks at the full spectrum at once, and is much faster (thanks ESTO!):

One bit autocorrelator w/ 0.2 ns resolution

Autocorrelator has a low-pass response

- Output from the one-bit correlator
 - · dots are data
- Input is 5 tones on an arbitrary waveform generator
 - curve is the expectation

A tunable comb filter for RFI mitigation

 WiBAR needs a wide frequency range, but not much bandwidth

Microwave comb filter $\leftarrow \rightarrow$ Optical Fabry-Perot interferometer (FPI)

Two directional couplers $\leftarrow \rightarrow$ Two metal film reflectors in FPI

Transmission line $\leftarrow \rightarrow$ Spacing between two reflectors

Phase shifting $\leftarrow \rightarrow$ Changing distance b/t reflectors

Comb Filter Measurement Results

Measurement setup

Comb Filter Response

Effect of phase adjustment

WiBAR Scene simulator

A new WiBAR calibration is needed

A TD-WiBAR calibration can remove RFI

- Adjust comb filter phase to minimize output power
- Bonus: new calibration algorithm also removes zero-lag peak and its sidelobes

Contributions

 Novel microwave receiver architecture for passive measurement of snow and ice accumulation that is sensitive to its macroscopic, not microscopic, properties

Next Steps

- Final integration and test of rapid acquisition hardware
- Validate RFI mitigation effectiveness
- Develop reduced SWAP receiver
- Go airborne, produce images & attempt disaggregation

